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Abstract

We study the changes of premature mortality over time, using a para-
metric model with response variable the life table distribution at deaths.
The model is a mixture of three distributions: one for the infant and child
mortality, another for accidental and premature mortality and the last for
adult mortality. The main advantages of the model are: the possibility
to compute, in explicit form, the three component contributions of life
expectancy; the identification of the three modes (one for each function),
which helps to split the overall area distribution in the different stages
of life. Moreover all parameters have a demographic interpretation. The
mixture distribution model is tested using the Swedish raw data from the
Human Mortality Database. Our results show that, over time, the pre-
mature mortality function becomes flatter and more symmetric, and its
mode shifts progressively. This indicates that the accidental mortality has
disappeared, while the premature mortality cannot be neglected. We also
show that its contribution, both to explain life expectancy and the area of
the distribution, decreases in the last century, but in recent years it starts
to grow slightly.

1 Introduction

The life table distribution of deaths by age has changed over time and is dif-
ferent across countries, however its elementary structure is preserved. Lexis
(1878) divided this distribution in three parts: infant deaths, the normal deaths
(a symmetric curve with its maximum on the modal age) and a transition region
between youth and adult life, called premature mortality. Clarke (1950) focused
on the second part of the distribution and referred to Lexis’ normal deaths as
senescent and the premature deaths as anticipated. Pearson (1897), took this
idea even further and considered this distribution as composed by five functions
with different degrees of skewness. In particular he distinguished between in-
fancy and childhood mortality and he identified the youth deaths (accidental
mortality) like a symmetric curve with its mode around the age of 25 years;
middle life and old age mortality correspond to Lexis’ premature and normal
deaths respectively. Moreover Pearson asserted that the distribution of adult
age can not be symmetric because it depends on the incidence of deaths at
earlier ages. Following this consideration we divide the death distribution into
three components: infant and child mortality, premature and adult mortality.
To fit the adult mortality we use a skew function, so that the premature mor-
tality models the deaths that occur between the youth and the first part of the
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adulthood: it is the sum of accidental mortality and the excess of deaths that
the skew adult curve is unable to estimate.

Different authors have studied the path of the distribution of deaths to un-
derstand the evolution of mortality. In fact, since the last century, in European
countries, the distribution has experience of the following changes: the infant
mortality reduced substantially, without disappearing; the childhood mortality
vanished; the accidental hump, very common for male between 20 and 40 years
old, now is quite negligible and the adult mortality experienced a shift and a
compression. The greater part of researchers focus on the transformations of
infant and adult mortality, overlooking what happens to premature mortality.
The main reason is the absence of appropriate models to estimate it. In fact
the most common mortality models (Gompertz, Makeham, Siler, Kannisto, ecc)
do not fit very well this part of the curve, in particular before and during the
demographic transition. The most famous model that is able to catch the acci-
dental hump is the Heligman and Pollard model (1980). However some studies
show that: i) It is difficult to estimate its parameters due to identification issues
(Dellaportas et al, 2001) and, ii) to fit well the accidental mortality for the latest
years an extra parameter is required (Heligman and Pollard, 1980). Inspired by
the work of Pearson and the ability to account for the accidental hump in the
Heligman and Pollard model, we use a newly proposed model which combines
those approaches. Our model has less identification problems and it has the
advantage to be able to fit the accidental hump when it is reasonably evident.

2 Data

To fit the model we chose the data from the Human Mortality Database. In
particular, to test the model we use the raw death counts from Sweden from
1910 to 2011. We chose these country for two reasons. Firstly it has good data,
even if we consider the raw historical data (we do not want to test our model
with data that are modelled or smoothed themselves). Secondly, Sweden is a
furerunner country in terms of reduction in mortality, so if the model fits well
its data, we have good chance to get good results also for other countries.

3 Method

We model the life table function of the distribution of deaths (dx), following
Mazzuco et al.(2015) proposal of a new parametric model, to analyse the changes
over time of the premature mortality. The selected model is a mixture of dis-
tributions, and it is briefly explained below.
To fit infant and childhood mortality a Half Normal (HN) is employed. This
distribution, defined only for values greater or equal than 0, has the probability
density function (pdf):

fI(x;σ) =

√
2

σ
√
π

exp

(
− x2

2σ2

)
x > 0,

where the variable x is the age at death and σ is the shape parameter of the
distribution, which is related to the variance. In order to simplify the model,
we fix σ = 1. This choice follows from three considerations: first, when σ is
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estimated it gives values close to 1; second, in low infant mortality contexts (very
common in Europe since the second half of the last century), the estimation
process tends to set big values for σ, so the model is unable to capture the
infant deaths (d0); third, we aim to reduce the number of parameters to avoid
identification problems and bad fit.
To capture premature mortality and adult mortality two Skew Normal (SN)
Distributions are employed. This type of distributions was developed by Azzalini
in 1985 and its pdf is the following:

fm,M (x; ξ, ω, λ) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
λ
x− ξ
ω

)
,

where φ(·) is the standard normal cumulative distribution function (cdf), Φ(·)
the standard normal pdf, ξ the location parameter, ω the scale parameter and
α the shape parameter. If α = 0, a Normal density function is obtained.
Thus, combining the three functions (see Figure 1) with the mixture (or weight-
ing) parameters η and α, we end with a model with 8 parameters:

f(x, θ) =η · fI(x; 1) + (1− η) ·
[(

α

1 + α

)
fm(x; ξm, ωm, λm)+(

1

1 + α

)
fM (x; ξM , ωM , λM )

]
,

where θ is the vector of 8 parameters, η is the first mixture parameter with
value ranging in [0, 1] and α is the second mixture parameter which can assume
positive values (α ≥ 0). The parameter α appears in a fraction to allow greater
variation in the estimation process. The subscript m indicates the function for
premature mortality, while M the function for adult mortality.

All the parameters have a demographic interpretation. The first mixture
parameter m is the intensity of infant mortality and it is related to q0. More-
over, the variance of the Half Normal distribution, m2

(
1− 2

π

)
, can explain how

quickly the child mortality decreases. The second mixture parameter α indi-
cates the importance of the premature mortality (if it is close to 0 we do not
have premature mortality and the model is able to explain the young and the
adult mortality with only fM ). The three parameters of fm are: ξm (position
parameter) which is related to the value of the second mode; ωm (scale param-
eter) is related with the variance of the distribution, so if its value is small the
premature mortality is concentrated at some ages, while if its value is big, we
obtain a vary flat function (it means that the premature deaths affect an ample
interval age); if the third parameter λm is positive, we obtain a skewness on
the right, otherwise the skewness is on the left. We have also three parameters
for fM : ξM which is related to life expectancy at birth; ωM says how much
the adult deaths are concentrated around the adult mode; λM the parameter of
skewness. We expect to observe negative values for this last parameter because,
usually, the adult distribution of deaths shows an asymmetry towards the left.
Furthermore, if its value is small the adult distribution is close to the symmetry,
otherwise we observe a big skewness.
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Figure 1: The three different functions of the mixture model (the resulting
model is the grey dotted line) and the position of their modes (the solid dots
with the respective colours).
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Moreover the variance of the two Skew Normal distributions,

Vm =ω2
m

(
(1− η)

α

1− α

)2

1−
2

(
λm√
1+λ2

m

)2

π

 and

VM =ω2
M

(
(1− η)

1

1− α

)2

1−
2

(
λM√
1+λ2

M

)2

π

 ,

can be interpreted respectively in terms of horizontalization and verticalization
(Cheung et al. 2005) of the survival curve. In fact the first variance indicates
how many deaths occur before adult mortality, while the second, shows how
concentrated the deaths around the modal age of death are.

We use Maximum likelihood to estimate the mixture function. Since we
are modelling the probability of the number of deaths, that occur in the age
interval (x, x + 1), the multinomial distribution is appropriate. The likelihood
that follows is:

L(θ; d.x) =

Ω∏
x=0

p(x; θ)d.x,

where p(x; θ) corresponds to the number of deaths in the interval x and x+ 1

p(x; θ) =

∫ x+1

x

fX(t; θ) dt.

An advantage of this model is that we can split, in explicit form, the contri-
bution to life expectancy of the three different components: infant, premature
and adult mortality. In fact e0 is the mean of the distribution and it should
be divided into the weighted average of the Half Normal distribution and the
means of the Skew Normal distributions multiplied by the constants η and α
(see Table 1).
Another important measure of longevity used to understand mortality changes

is the old modal age at death (Canudas-Romo, 2008; Chueng et al.,2005; Ho-
riuchi et al.,2013; Missov et al., 2015; Bergeron Boucher et al., 2014). For our
model it is possible to identify 3 different modes. The Half Normal distribution,
describing infant and child mortality, has always its mode at age 0, and its level
is very easy to compute because it corresponds exactly to its mean, coinciding
with infant mortality at death (d0). For the other two distributions the values
of the modes (m for the premature mortality and M for the adult mortality)
are calculated numerically. Whit this three modes it is possible to split the area
under the distribution of deaths in five parts (see Figure 2): the infant mortality
area, i.e. m because the area of fI is 1 (we work with distributions , so their
integral is 1); the premature mortality area calculated as the integral of fm
between 10 (this age is chosen to delete the infant component) and the last age
ω; the adult mortality area, which is η 1

1+α because the integral of fM between
0 and ω is 1. We also define the symmetric adult mortality, which is the double
integral of fM between its mode M and ω, and the area of skewness mortality,
calculated as subtraction between the integral of fM and the symmetric adult
area (see Table 1).
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e0

Mortality formula value Area

Infant η
∫ Ω
0 x · fI(x; 1) dx η

(√
2√
π

)
η

Premature (1− η) α
1+α

∫ ω
0 x · fm(x; ξm, ωm, λm) dx (1− η) α

1+α

(
ξm + ωm

λm√
1+λ2

m

√
2
π

)
Am = (1− η) α

1+α

∫ Ω
10 fm(x; ξm, ωm, λm) dx

Adult (1− η) 1
1+α

∫ Ω
0 x · fM (x; ξM , ωM , λM ) dx (1− η) 1

1+α

(
ξM + ωM

λM√
1+λ2

M

√
2
π

)
AM = 1−η

1+α

Symmetric - - Asy = 2
∫ ω
M f(x, θ) dx

Skewness - - Ask =
∫ ω
10 f(x, θ) dx−Asy

Table 1: Values of the contribution of the tree different function to the calcula-
tion of e0 and integral formula to compute the area of the different component
od the deaths distributions.
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Figure 2: The different areas that compose the death distribution.
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4 Results

We estimate the model for Sweden from 1910 to 2010. In Figure 3 we show the
fitted function for two different years (red solid line). For each year the model
has a good fit and it is also very close to the estimations given by the Human
Mortality Database (blue line). We focus our attention on fm, the dotted green
line, because this function is adopted to approximate the premature mortality.
In 1935 (during the demographic transition), we can see that its probability
is concentrated between 10 and 40 years old. Its mode is around 23 years
old, so the premature mortality coincides for the most part with the accidental
mortality. In the second graph, classic post-transition path, we observe that fm
is flatter and its probability is spread across the middle life. In fact its mode
is close to 50 years of age. In this case, the function estimates deaths that
occur almost randomly during the youth and the first part of the adulthood
(premature mortality).
In general, looking at the premature mode, we observe a gradual shift of its
value, associated with a reduction both of the skewness and the variance (Figure
4). In fact the values of λm arrive very near to 0, indicating that the Skew
Normal Distribution progressively becomes a Normal Distribution. The decrease
of ωm (and, then, of the variance) is explained considering that at the beginning,
fm fits the accidental mortality and also the premature one, so it requires a big
variance because it covers a large age interval (youth and first part of adulthood).
With the disappear of accidental mortality, a small variance is necessary because
now the function models only the premature mortality.
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Figure 3: Model fit comparison between two years in Sweden. The row data are
plotted in grey, the smoothed data calculated by the Human Mortality Database
are the blue curves, the mixture model is the read curve and the green dotted
curve is fm with its mode.

We compute the decomposition of e0. The results are showed in Figure 5.
In the graph we can see the contribution of the three parts of the model, t.i
e0I , e0m and e0M , summed progressively: e0I , e0I + e0m, e0I + e0m + e0M = e0.
The distance between the curve is the values of the single contribution, while
the value of the curve is the overall amount. Again we focus on the second
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Figure 4: Mode (m), scale parameter (ωm) and skewness parameter (λm) of the
premature mortality function fm.

curve, related to the premature mortality. We can see that its contribution
reduced between 1930 and 1950, and, then, it becomes quite constant, without
disappearing, like happened to infant mortality contribution. However, in the
last few years (1990-2011) it seems to increase slightly, perhaps due to greater
incidence of some diseases that affect population during these ages.
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Figure 5: The contribution of the three functions for the calculation of e0: in
pink adult contribution, in green the premature one, in light blue the infant and
child one.

Finally, in Figure 6, we show the areas of the integrals of adult mortality
and Asy, while Figure 7 displays Am. As we expect the area of adult mortality
covers most of the part of the distribution (it is close to 1). We also note that
its value grows rapidly during the first years and then slows down. Figure 6
displays also the values of the symmetric area around the adult mode. As we
expected the values of the area increase, indicating both a reduction of accidental
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mortality and smaller values of skewness (λM ). Towards recent years the area
starts to decrease. This is due to both an increase of skewness (its parameters
decrease), and to the presence of the premature mortality (the parameter α is
increasing). In fact, the area of premature mortality at the beginning decreases
rapidly, and, after a quite stable period, it slightly grows. This result can be
interpreted considering that at the beginning, fm fits the accidental mortality,
that gradually disappears in the last century, while from the second half of the
considered years, the function catches the premature mortality.
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Figure 6: Area of the adult mortality, splitted into its symmetric component
and the estimates values of the skewness adult parameter λM .
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Figure 7: Area of the premature mortality fm and the path of the parameter α.

5 Conclusions

In conclusion we can say that, during the last century, the accidental mortality
is disappearing, making way for the premature deaths across youth and part of
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old adulthood.
In this work we show that the contribution of premature deaths is important,
first to have a good fit of the model for the data and, second, to understand
mortality changes. In fact, even if its contribution to explain life expectancy
and its area is not bigger, it gives a greater contribution than infant mortality.
Moreover, if the tendency, although light, of premature mortality increase in
recent years is confirmed in other countries, it will be necessary to understand
what are the causes related to this phenomena.
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