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Abstract

A new mortality model based on a mixture distribution function is

proposed. We mix a half-normal distribution with a generalization of the

skew-normal distribution. As a result we get a six-paramters distribution

function having a good fit with a wide variety of mortality patterns. This

model is fitted to several mortality data and compared with Siler (five pa-

rameters) and Heligman-Pollard (eight parameters) models. The proposed

model can be a convenient compromise between Heligman-Pollard model

(which ensures a good fit with data but is often overparameterised) and

Siler model (which is more compact but fail to capture accident humps).

Keywords: Mortality model, mixture distribution, skew bimodal

normal distribution

1 Introduction

Human mortality modelling is an issue that attracted the attention of several

demographers and scholars from other fields. However, in contrast to fertility
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modelling field, where several different models have been – even recently pro-

posed (see, for instance, Chandola et al., 1999; Schmertmann, 2003; Peristera

and Kostaki, 2007; Mazzuco and Scarpa, 2015), very few models are available

for such analysis. The most popular alternative is the Gompertz (1825) model:

the latter owes its popularity to its compactness and parsimony’s, which make

it particularly suited for comparative work. However Gompertz model does not

incorporate all source of mortality, in particular infant and young adulthood

mortality, while it is particularly focused on senescent mortality. Makeham

(1860) generalized the Gompertz model, but such a generalization still disre-

gards mortality at ages below 30. A further generalization has been provided

by Siler (1979; 1983): a negative Gompertz function is added to Gompertz-

Makeham model, so that infant mortality is also fitted. Finally, Heligman and

Pollard (1980) proposed a 8-parameters models also incorporating what is usu-

ally referred to as “accident hump” (i.e. a hump often observed among males

deaths function in correspondence of young adulthood ages). In developed coun-

tries this is interpreted as a peak in mortality due to a peak of male hormone

production during puberty that increases the likelihood of dangerous behaviors

by male adolescents (see Goldstein, 2011). However, in developing world, this

hump is not necessarily confined to male population, and in case of high diffusion

of HIV epidemic a much larger bulge can be found among female population.

Sharrow et al. (2013) use Heligman-Pollard model to fit mortality data of a

population with particularly high diffusion of HIV. However Rogers (1986) and

Gage and Mode (1994) noted that estimation of Heligman-Pollard model is dif-

ficult due to model overparameterization and numerical issues of the commonly

used estimation approach (i.e. weighted least squares). These estimation prob-

lems lead Dellaportas et al. (2001) and Sharrow et al. (2013) to use a Bayesian

estimation approach. In this contribution, an additional model is proposed by

mixing a half-normal and a Skew Bimodal Normal (Rocha et al., 2013) distri-

bution. In this way we get a six-parameters model that is more parsimonious

(thus with less identification issues) than the Heligman-Pollard model but ac-

counts for all sources of mortality, including the “accident hump”. It worths

noting that in the proposed mixture model, deaths rather than rates (as in the

Gompertz-Makeham model) or probabilities (as in the Heligman-Pollard model)

are modeled. This choice stems from the fact that deaths of a life table can be

seen as a probability density function. Therefore, this model can be easily es-
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timated with a maximum likelihood approach, but other approaches such as

weighted least squares or Bayesian inference can be used. The mixture model

will be fitted with several mortality data of different shapes and compared with

other models. We will follow the guidelines suggested by Congdon (1993) to

evaluate model performance, which list the most important characteristics that

a mortality model should have: smoothness, parsimony, interpolation, compa-

rability, suited for trends and forecasting and analytic manipulation.

2 Modelling the “deaths” function

The model proposed by Heligman and Pollard (1980) represents the probability

of dying at age x, qx, using the following formula

qx
1− qx

= A(x+B)C +D exp

[
−E

{
log
( x
F

)}2
]

+GHx (1)

Basically, overall mortality is decomposed into three parts: the first one related

to infant and child mortality (A represents the infant mortality rate and B

mortality rate for one year old children, C is related to the rate of mortality

decline after age 1), the second one is related to mid-life mortality with D, E

and F representing the severity, the spread and the location of the accident

hump, respectively; the third part reflects old age mortality being G the base

level of old age mortality and H the rate of increase of mortality with age.

de Beer and Jansen (2014) define an extension of the (1). The model proposed

by Siler (1979, 1983) represents the death rate at age x using the formula

mx = a1e
−b1x + a2 + a3e

b3x (2)

This model also decomposes mortality into three components, but differently

from Heligman-Pollard model accident humps are not allowed, a constant death

rate in mid-life ages is assumed, instead. It might be noted that the (2) is

a generalization of Gompertz-Makeham model, which is obtained by imposing

a1 = 0.

The underlying idea of our proposal is that deaths rather than rates (as in

the Siler model) or probabilities (as in the Heligman-Pollard model) are mod-

eled. This choice stems from the fact that deaths of a life table can be seen

as a probability density function, thus maximum likelihood estimation becomes
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straightforward. Dellaportas et al. (2001) also uses deaths to fit Heligman-

Pollard model, while Sharrow et al. (2013) use a Bayesian melding approach

to death probabilities. We therefore need to find a density function that can

have a good fit with deaths of a life table. This means finding a probability

density function with at least two modes (one at birth and one at the Lexis

point) but with possibly a third one, catching the so-called “accident hump”.

Figure 1 shows death functions from four different life tables: pre and post tran-

sitional Sweden, Hungary 2009 (with a particularly high skewness of adult age

mortality) and Agincourt health and demographic surveillance system site in

South Africa 2002. The first three life tables are provided by Human Mortality

Database while the latter is provided by Sharrow et al. (2013). Sweden 1751

has a typical pre-transitional shape, with child mortality overwhelming the mor-

tality at adult ages. In opposition, Sweden 2010 has a post-transitional shape,

with a very limited infant mortality and a much more relevance of old age mor-

tality. Hungary 2009 is a particular case with a particularly high skewness of

adult deaths. Finally, Agincourt site mortality is affected by HIV diffusion, and

an additional hump is observed at young adulthood ages. Siler model is likely

to have a good fit in the first three cases but not in the Agincourt site, while

Heligman-Pollard model is expected to have a good fit in Agincourt site, as also

shown by Sharrow et al. (2013), but is also likely to have several identification

problems in the other cases. We are looking for a model having a good fit in

all cases without running into identification problems as the Heligman-Pollard

model does. We, therefore decompose overall mortality into two parts: child

mortality and adult mortality. Infant and child death function is modeled by

means of a half-normal distribution, which is a normal distribution with mean

0 limited to the domain (0,+∞) and has the following distribution function

fY (y;σ) =

√
2

σ
√
π

exp

(
− y2

2σ2

)
y > 0 (3)

fY (y;σ) has a maximum in zero, and then decreases as y increases. The rate to

which it decreases depends on the value of the scale parameter σ: the higher σ

the slower the mortality decline.

Adult death function is modeled using a generalization of the skew normal

distribution. Skew normal distribution has been firstly introduced by Azzalini
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Figure 1: Different deaths functions from Sweden (1751, 2010), Hungary (1994)

and Agincourt health and demographic surveillance system site in South Africa

(2002)
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(1985) and its distribution function is given by

fX(x; ξ, ω, α) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
α
x− ξ
ω

)
(4)

where φ(·) is the standard normal density function, Φ(·) the standard normal

pdf, ξ the location parameter, ω the scale parameter and α the shape parameter.

It can be easily seen that if α = 0 the (4) reduces to a normal density function.

Since the the article by Azzalini (1985), extensions of skew-normal distribution

received much attention in the literature (see Azzalini and Capitanio, 2013).
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In our case, it is of particual interest that skew-normal family of distribu-

tions can be extended obtaining bi-modal skewed distributions. Rocha et al.

(2013), for example, propose a generalization of the skew-normal distribution,

called Skew Bimodal Normal (SBN), which characteristics are discussed by Elal-

Olivero et al. (2009). Its probability density function is the following

fX(x; ξ, ω2, α, λ) = 2ω−1

1 + α
(
x−ξ
ω

)2

1 + α

φ

(
x− ξ
ω

)
Φ

{
λ

(
x− ξ
ω

)}
. (5)

The (5) can have - at most - two modes depending on the value of α. In

particular if α ≥ 0.5, the resulting pdf has two modes, otherwise (α < 0.5) the

pdf is unimodal. Thus, by mixing the (3) and the (5) we get the mixture model

fZ(z;m,σ, ξ, ω2, α, λ) = m · fY (z;σ) + (1−m) · fX(z; ξ, ω2, α, λ) (6)

where m is the mixture parameter (with support [0, 1]), σ the parameter of the

half-normal distribution and ξ, ω, α and λ the parameters of the SBN distribu-

tion.

Inference on model (6) is quite straightforward, considering that the death func-

tion is a density function determining the age distribution of deaths. Then, let

us suppose we have the death function dx and the total number of deaths oc-

curred D, therefore the death occurred at age x are Dx = dx ·D. The likelihood

of vector Dx is given by a multinomial model

L(m,σ, ξ, ω2, α, λ;Dx) =

Ω∏
x=0

p(x)Dx . (7)

Then, a parametric form can be specified for p(x) and if we assume that deaths

are distributed across age according density in (6), we can write

p(x;m,σ, ξ, ω2, α, λ) =

∫ x+1

x

fZ(z;m,σ, ξ, ω2, α, λ)dz (8)

and maximize the (7).

3 Interpreting parameters

Among the advantages of representing mortality through a parametric curve

Congdon (1993) cites comparability and forecasting. Forecasting in particu-

lar can be done on the base of reasonable assumptions about parameters of
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the model. Thus, if a parametric model should be used for forecasting – and

comparison, as well – we need a sensible demographic interpretation of all pa-

rameters of (6). Although, model formula might look awkward, it is not difficult

to find an interpretation of parameters m, σ, ξ, ω, α and λ. This can be done

in the light of the work by Cheung et al. (2005), who define three dimensions

of the survival curve: horizontalization (i.e. how many survivors live before

old age), verticalization (i.e. the concentration of aging-related deaths) and

longevity extension (i.e. the relative length of the tail of longevity). We will

refer parameters in (6) to these three dimensions showing the values they take

in four different mortality regimes: a pre-transitional regime (Sweden, 1781), a

post-transitional regime (Sweden, 2010), a developing country with high HIV

prevalence (Agincourt, 2002, women) and a post-transitional regime with a rel-

ative high skewness of adult deaths (Hungary, 1994). Estimates are reported in

table 1, together with standard errors, which have been computed via bootstrap.

Estimates for Siler and Heligman-Pollard models are reported in Appendix B.

Moreover, we fit mixture model to data from a long time series USA (1933–

2010), so we can map parameter estimates for every with sensible life tables

quantities. In this way, it should be easier to interpret parameters of mixture

model. Moreover, following Congdon (1993), we bear in mind that goodness of

fit should be considered together with statistical stability, a problem especially

arising for overparameterized models. Thus, fitting data from a time series also

allows us to assess statistical stability. USA mortality is relatively smooth over

time, thus we should expect a smooth pattern also for model parameters. This

data has been taken from Human Mortality Database and figures of parameters’

estimates and life table quantities and of parameters’ estimates trend over time

in USA 1933-2010 are shown in appendix.

The mixture parameter m is a measure of the relative weight of the two mix-

ing distributions, thus, in our model, can be interpreted as the relative weight

of infant and child mortality, captured by fY (z;σ) on overall mortality. From

table 1 we can see that the highest value of m is found for Sweden 1781 and

the lowest for Sweden 2010, as we would expect. The relation between mixture

parameter and child mortality is even more clearly shown by figure 3 where

mixture parameter is mapped with values of q0−5 from life tables.

The scale parameter of the half normal distribution σ is a measure of the extent

to which the peak of mortality at birth is extended to ages greater than 0. Thus
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a high value of σ indicates that also child mortality (i. e. mortality between ages

1 and 5) and not only infant mortality (i.e. mortality at age 0) is high. In table

1 we can see that in pre-transitional Sweden and Agincourt site estimate σ is the

highest, while in Hungary even though infant mortality is relatively high, child

mortality is quite limited, as it can be seen from figure 1. Figure 4 shows that

Half-normal scale parameter is strongly related with q1−5. It should be noted

that the rlation is less evident when the values of q1−5 are low. This reveals

that this parameter is not well identified when infant and child mortality (we

expect that when q1−5 is low also q0 is low) is low. However the same problem

arises for Siler model: when infant and child mortality becomes low, estimates

of b1 parameter becomes increasingly variable.

Mixture and half-normal scale parameters are related to the degree of horizon-

talization of the survival curve, as the higher child and infant mortality and the

lower share of survivors live until old ages. A third parameter related to hori-

zonatalization is α, which is the parameter determining whether the additional

mode (the accident hump) exists or not. Rocha et al. (2013) and Elal-Olivero

et al. (2009) show that if α ≥ 0.5 then the SBN density is bimodal. Therefore, if

α ≥ 0.5 then an accident hump is detected by the mixture model and the higher

the value of α the more pronounced the hump. In table 1 we can see that only

for pre-transitional Sweden and Agincourt site α is greater than 0.5, revealing

the hump that clearly appears in figure 1, while for the other countries there is

no hump and α < 0.5. Actually Hungary shows a small hump around 20, but

it is quite negligible.

The SBN scale parameter ω indicates to what extent old age mortality is concen-

trated on modal age at death and can be taken as a measure of verticalization:

the lower the variance, the steeper the decline of survival curve in old age. We

can see a particularly high value of ω for Hungary and post-transitional Sweden

and from figure 1 appears that in these countries we have a high variability

around modal age at death. The low value of ω for Agincourt site should be

interpreted keeping in mind the value of α: the latter parameter catches the

premature deaths in the accident hump and therefore these are not considered

by ω, which value decreases. We relate the values of SBN scale parameter with

adult mortality (q5−50) and it can be seen (see figure 5) that the highest the

adult mortality indicators the highest the value of ω.

The other shape parameter of SBN distribution indicates the distribution skew-
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ness. In particular, if λ is positive then the pdf is skewed on the right, while

if λ is negative the distribution is skewed on the left. From table 1 we notice

a particularly low value of λ for Hungary, and this reflects the high skewness

we noticed in figure 1. The value of λ for Agincourt site indicates a symmetric

distribution, but, once again, this should be interpreted considering the value

of α that captures death determining the accident hump. As for interpretation,

distribution skewness indicates where the mass of distribution is more concen-

trated. Thus a left skewed distribution means that most of aging related death

are concentrated after the modal age. Thus, we relate the skewness parame-

ter to number of deaths occured in adult age (after 50) concentrated after the

modal age at deaths (figure 7). The association is particularly clear: the lower

the skewness parameter, the higher the share of adult deaths concentrated after

the modal age at death.

Finally, ξ is the location parameter of SBN, and it is strictly connected to

average life duration of adults. Considering that life expectancy at birth is par-

ticularly sensitive to infant mortality level, we relate SBN location parameter

to life expectancy at 10. From figure 6, clearly appears that the higher the SBN

location parameter the higher the life expectancy at 10.

Therefore, we can state that a demographic interpretation can be found for all

parameters, even though it cannot be denied that interpretation becomes more

difficult for some of them (ω, λ and ξ) when an accident hump exists (α ≥ 0.5).

The latter is an aspect of the model that needs further exploration, in particular

it would be useful to know how SBN location, scale and skewness parameters are

associated with α. Figure 8 shows the trend of parameters’ estimates over time.

It might be noted that that the curves are quite smooth (there is an expectation

for α that has a peak around 1940, but its value remains below 0.5 threshold)

and give some indications on US mortality trend: infant (mixture parameter)

and child (HN scale parameter) mortality has fallen in these decades, longevity

extension (SBN location) has increased, adult (5-50) mortality has also fallen

(SBN scale) and mortality after 50 has increasingly been more concentrated

after the modal age at death (SBN skewness). No accident hump has been

observed through these years (SBN shape).
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Table 1: Parameters estimate for mixture models in 4 countries (bootstrapped

standard errors between parentheses)

Country m σ ω α λ ξ

Sweden (1781) 0.289 0.833 16.487 1.947 0.271 42.504
(0.007) (0.161) (0.108) (0.081) (0.021) (0.538)

Sweden (2010) 0.010 0.465 19.884 0.000 -6.480 94.904
(0.007) (0.413) (0.402) (0.045) (0.336) (0.358)

Hungary (2009) 0.069 0.357 18.773 0.449 -10.000 88.533
(0.021) (1.269) (0.824) (0.143) (0.050) (0.219)

Agincourt (2002) 0.094 0.928 15.515 2.110 0.131 58.880
(0.016) (0.134) (0.383) (0.300) (0.067) (1.766)

Table 2: Heligman-Pollard, mixture and Siler models AIC in 4 countries.

Country Heligman-Pollard SBN + HN Siler

Sweden (1781) 182196.27 184246.40 182133.28

Sweden (2010) 337125.61 338787.65 343838.84

Hungary (2009) 543042.43 539920.98 544107.69

Agincourt (2002) 16279.43 16447.16 16623.39

4 Model fit

In this section, we compare the goodness of fit of model (6) and that of Siler and

Heligman-Pollard models in the 4 cases exposed in figure 1. Table 1 shows the

mixture model parameters’ estimates for this data, while table 2 reports values

of Akaike Information Criterion for all models in the 4 considered countries.

Moreover, figure 2 shows the fit provided by mixture and Siler models to the

four mortality regimes. Mixture model AIC is very close to Heligman-Pollard

one in Sweden 2010 and even lower in Hungary and better than Siler model in

Agincourt site. Its performance is not very good in Sweden 1751: in this case,

since almost half of deaths occurs at age 0, it is crucial the estimate of infant

mortality and Siler model provides the best fit for it. From curves in figure 2

it appears that all models have a reasonably good fit with data. There is one

exception, though: Siler model does not capture the second hump for Agincourt

site data, whereas Heligman-Pollard and mixture models do. This does not

come as surprise, as Siler model cannot capture a second hump. Summarizing,

10



Figure 2: Different deaths functions from Sweden (1751, 2010), Hungary (2009)

and Agincourt health and demographic surveillance system site in South Africa

(2002) with fitted curves of Heligman-Pollard, Siler and SBN+HN models.
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we can conclude that, mixture model has a good fit in all mortality age patterns

also, contrary to Siler model, when there is an additional hump (the so-called

“accident hump”). Heligman-Pollard has also a good fit in all the schedules

we used but is less parsimonious than the mixture model, a characteristics that

leads it to be often overparameterised, as noted by Congdon (1993). In addition,

mixture model is also flexible enough to catch in a proper way mortality age

distributions with a particularly high level of skewness, such as that shown by

Hungary. Such a flexibility is lacking in both Siler and Hleigman-Pollard models,

as hown by figure 2.
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5 Conclusion

We defined a new mortality model based on a mixture of a half normal distri-

bution and a Skew Bimodal Normal one. This model has been fitted to several

mortality data with very different shapes of death counts curve, and a compari-

son has been made with the fit provided By Siler and Heligman-Pollard models.

This model has shown several good properties. First it is flexible enough to

have a relatively good fit with a wide range of mortality schedules, both pre

and post transitional, with or without accident hump. The fit is good also with

data with high skewness, where both Siler and Heligman-Pollard fail in catching

data skewness. In no case we found a bad fit of the mixture model. Second, the

mixture model is more parsimonious than the Heligman-Pollard model, and this

makes it easier to fit. Moreover, since by modelling the death count function –

which can be considered as a probability density function, we have a straight-

forward maximum likelihood estimate of parameters. Third, all the parameters

have a sensible demographic interpretation and this makes it useful also for

forecasting purposes.

Following the guidelines suggested by Congdon (1993) to evaluate model perfor-

mance, we can say that mixture model is a valid choice because it is suited for

interpolation, comparability, trends and forecasting and analytic manipulation.

Given these first results, the analysis of the mixture model can be further ex-

tended in several directions. One possible extension is testing whether the model

can be useful in cases where data are scarce and fragmentary. This problem has

been faced by Wheldon et al. (2013) by means of a measurement error model,

but assuming a parametric model on mortality, a Bayesian approach, specify-

ing an informative prior distribution on parameters, can be considered to give

a complete representation of mortality patterns. Bayesian inference on SBN

model has already been discussed by Rocha et al. (2013), thus extending their

suggested strategy to make inference on model (6) should be relatively easy. An-

other possible application of the mixture model is forecasting future mortality

schedules. Figure 8 shows that the trend of mixture models parameters for USA

is smooth enough to be extrapolated in future years. This can be done with

simple time-series forecasting tool like, for instance, the Holt-Winters procedure

(see, e.g., Holt, 1957; Winters, 1960).
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Appendix A: Estimates on USA 1933–2010

Figure 3: mixture parameter of model (6) and values of child mortality q0−5
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Figure 4: Half normal scale parameter of model (6) and values of q1−5
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Figure 5: Skew bimodal normal scale parameter of model (6) and values of adult

mortality q5−50
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Figure 6: Skew bimodal normal location parameter of model (6) and values of

life expectancy at 10 e10
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Figure 7: Skew bimodal normal skewness parameter of model (6) and share of

adult (over 50) deaths occurring after modal age.
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Figure 8: Mixture model parameters estimates. USA 1933–2010
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Appendix B: Siler and Heligman-Pollard models

likelihood and estimates

Siler and Heligman-Pollard models have been also estimated via maximum like-

lihood using multinomial formula in (7), where probabilities px are determined

by the following formula for Siler model:

px = S(x; a1, b1, a2, a3, b3)− S(x+ 1; a1, b1, a2, a3, b3) (9)

S(x; a1, b1, a2, a3, b3) = exp

(
−a1

b1
· (1− exp(−b1x))

)
· exp(−a2t) · exp

(
a3

b3
· (1− exp(b3 ∗ t))

)
The results of such a model are reported in table 3.

Table 3: Parameters estimate for Siler model in 4 countries (bootstrapped stan-

dard errors between parentheses)

Country a1 b1 a2 a3 b3

Sweden (1781) 0.447 0.833 16.487 1.947 0.271
(0.050) (0.161) (0.108) (0.081) (0.021)

Sweden (2010) 0.042 0.465 19.884 0.000 -6.480
(0.028) (0.413) (0.402) (0.045) (0.336)

Hungary (2009) 0.131 0.357 18.773 0.449 -10.000
(0.046) (1.269) (0.824) (0.143) (0.050)

Agincourt (2002) 0.078 0.928 15.515 2.110 0.131
(0.346) (0.134) (0.383) (0.300) (0.067)

The px for Heligman-Pollard model is defined by

px = S(x;A,B,C,D,E, F,G,H)− S(x+ 1;A,B,C,D,E, F,G,H) (10)

S(x;A,B,C,D,E, F,G,H) = exp

(∫ x

0

q(t;A,B,C,D,E, F,G,H)dt

)
where q(t;A,B,C,D,E, F,G,H) is defined by (1). Results of estimates are

reported in table 4
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Table 4: Parameters estimate for Heligman-Pollard model in 4 countries (boot-

strapped standard errors between parentheses)

Country A B C D E F G H

Sweden (1781) 0.126 0.000 0.737 0.009 0.000 15.263 0.000 1.102
(0.003) (0.022) (0.052) (0.000) (0.025) (0.979) (0.000) (0.001)

Sweden (2010) 0.001 0.015 0.280 0.001 0.971 55.000 0.000 1.141
(0.000) (0.008) (0.005) (0.000) (0.147) (0.253) (0.000) (0.001)

Hungary (2009) 0.003 0.000 0.671 0.005 18.652 56.987 0.000 1.103
(0.001) (0.084) (0.010) (0.001) (1.290) (1.114) (0.000) (0.018)

Agincourt (2002) 0.025 0.000 0.318 0.018 1.561 51.221 0.000 1.172
(0.002) (0.056) (0.036) (0.001) (0.340) (1.709) (0.000) (0.005)
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