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Abstract

Age at death distributions provide an extremely informative description of
mortality, yet they are generally neglected in modeling and forecasting. In this
article, we use age at death distributions to model the age-specific pattern of mor-
tality and to inform mortality forecasts. In particular, we introduce a segmented
linear transformation model based on the modal age at death and the variability
of deaths before and after the mode. This approach allows capturing the com-
pression and shifting dynamics of mortality. We illustrate our methodology by
estimating the distribution and life expectancy of two high-longevity countries
in the last thirty years. We show that the fitted life expectancies are very close
to the observed historical values. Furthermore, we forecast distributions and life
expectancies fifteen years ahead by using time series models for the parameters
of the segmented linear transformation.

1 Introduction

Mortality modeling has a fairly long history in demographic analysis, stretching back
at least to the beginning of the nineteenth century (Booth and Tickle, 2008). Mor-
tality models often focus on the age-specific pattern of mortality rates; in particular,
parametric distributions that try to capture the force of mortality with few parameters
have been very popular (for a comprehensive review, see Tabeau, 2001).

Age at death distributions provide an extremely informative description of the mor-
tality experience of a population (Preston et al., 2001). Yet, this crucial feature of
mortality has generally been neglected in modeling and forecasting (with the exception
of projections made by compositional data analysis in Oeppen et al., 2008).

The distribution of deaths can be efficiently summarized by its first two moments. The
first moment is the mean of the distribution, which is equivalent to life expectancy at
birth. The second moment is the variability of the distribution, which measures the
dispersion of the distribution around its mean.

Trends of life expectancy and variability of lifespan have received much attention
during the last decades (see, for example, Oeppen and Vaupel, 2002; Vaupel et al.,
2011). In low-mortality countries, the adult modal age at death has probably become
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a better indicator of longevity than life expectancy (Horiuchi et al., 2013). The modal
age at death is the age where most of the deaths occur, and it corresponds to the age
where the density function has a maximum value (Canudas-Romo, 2008).

Figure 1 shows the evolution of the modal age at death and the variability of lifespan
(measured with the Gini coefficient) during the last thirty years for females in two
high-longevity countries, Sweden and Japan. Both measures have followed a quite
stable linear trend during this period; however, it is hard to infer from the summary
measures which segments of the age range contributed most towards the observed
changes.

Figure 1: Modal age at death (left panel) and variability of lifespan (measured with
the Gini coefficient, right panel) in Japanese (black) and Swedish (blue) females in
1980-2010
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Source: authors’ elaboration on data from the Human Mortality Database (2015).

We wish to study the changes that have occurred in age at death distributions during
the last thirty years. In order to do so, we propose a non-parametric segmented linear
transformation model that focuses on the modal age at death and the variability of
deaths before and after the mode.

This article is organized as follows. In Section 2, we overview the mathematical
methods that we will use throughout this article. In Section 3, we first illustrate
our methodology by estimating the density and life expectancy of two high-longevity
countries during the last thirty years. Then, we forecast age at death distributions
for the two countries fifteen years ahead. In Section 4, we discuss the results and
conclude.
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2 Methods

2.1 Segmented linear transformation model

We seek to find an approach for modeling the age pattern of mortality that incorpo-
rates the first two moments of age at death distributions. These two moments are
closely related to the concepts of pace and shape of aging (Baudisch, 2011). Pace is
defined as the time scale of mortality, and it measures the characteristic length of life.
Shape instead is independent of time, and it refers to the change in the age-pattern of
mortality over the life course (Wrycza and Baudisch, 2014; Wrycza et al., 2015).

Whereas the development of the modal age at death can shed light on the changes
in pace over time, it is possible to obtain additional insights on the shape of aging
by looking at the variability of the distribution over two different segments of the age
range.

We propose an approach that captures changes in mortality patterns by a suitable
transformation of the age-axis, such that a series of age at death distributions over
time can be expressed solely by changes of the modal age at death (pace) and of
expansion/compression of the variability of deaths (shape). In particular, we split the
total variability of the distribution in changes before and after the mode.

For ease of presentation, here we consider only two age at death distributions: a target
distribution f(x), and an observed distribution g(x), where x denotes age. Our aim
is to estimate the transformation function t(x) so that the density of the distribution
g(x) conforms to the target density f(x) on the warped axis:

g(x) = f(t(x))

The main idea is that t(x) is a function of: (i) the change in the modal age at
death of the two distributions, and (ii) two additional parameters that capture the
expansion/shrinkage of the ages before and after the mode which is needed to conform
the observed to the target distribution.

Let s be the difference between the modal age at death of f(x) and g(x):

s = Mg −Mf

The transformation function t(·) can be thus written as follows:

t(x; s, bL, bU ) =

{
Mf − bL(s + Mf ) + bL x if x ≤Mg

Mf − bU (s + Mf ) + bU x if x > Mg (1)

In words, t(x; s, bL, bU ) takes the form of a segmented linear transformation model
which breaks at the value of Mg. The slopes of each linear part bL and bU capture the
amounts of expansion/shrinkage needed before and after Mg, respectively, in order to
fit the observed distribution g(x).

Figure 2 presents a schematic overview of the effects of t(x) to a given distribution
f(x). If a simple shift is adopted (red line of the left panel), the target distribution
is only shifted to the left maintaining the same variability before and after the modal
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age at death. This is a special case of (1) in which both bL and bu are equal to 1 and
the transformation function becomes: t(x) = s + x.

More realistic scenarios could be obtained by modifying the value of bL and bU which
act jointly with the shifting parameter s. When bL and bU are bigger than 1, the ages
before and after the mode of g(x) are shrunk, and therefore variability in age-at-death
is decreasing. Vice versa, when bL and bU are smaller than 1, we obtain an expansion
of the age axis and a consequent increase of the age at death variation before and
after the mode, respectively. In the example presented in Figure 2, the ages before
the mode are expanded and the ages above are shrunk (see blue lines).

Figure 2: A schematic overview of the effects of transforming the age-axis using a
segmented linear model.
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Moving from a continuous to a discrete framework, we first smooth all observed age at
death distributions. We used a P -splines approach as described in Camarda (2012).
Specifically, we describe the age at death distribution over age x for a particular year
y as follows:

g(x)y = exp [B(x)βy]

where B(x) is a basis of equally spaced B-splines, common for all the years, and
βy are year-specific penalized coefficients. By computing B(x) at finer grid of x, we
are able to evaluate each distributions at any finer scale, practically at a continuous
level. This allows us to estimate precisely any feature of the age at death distribution,
including the mode M (Ouellette and Bourbeau, 2011) as shown in Figure 1.

2.2 The target distribution

As a target density, instead of choosing an actual or a mean age at death distribution,
we first transform the observed densities so that their qualitative features line up.
Specifically, we register all densities so that their modal age at death are equal to the
modal age at death of the first observed density. In functional data analysis, this is
called landmark registration (Ramsay and Silverman, 2005).
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One can also view this technique as a simple shifting transformation of the age axis
where the parameter s is given by the difference between the modal age at death in
year y and y0, i.e. sy = My −My0 .

In formulas, the aligned age at death distribution in year y can be written as fol-
lows:

g(w(x))y = exp [B(w(x))βy]

where w(x) = x + sy. In other words, using the already estimated βy, it is sufficient
to evaluate the B-spline basis at a new shifted axis for aligning the corresponding
distribution.

Figure 3 presents the age at death distributions for Sweden and Japan from age 10 and
for all years between 1980 and 2011, aligned so that all modes are equal to the modal
age at death in 1980. We remove the peak of infant mortality and start our analyses
from age 10, as our interest here is limited to the adult mortality pattern.

The bold red lines present the mean distributions after registration which we will use
as a target distribution f(x). Again the target distribution could be expressed as a
linear combination of B-splines and “target” penalized coefficients:

f(x) = exp [B(x)βf ] .

It is easy to see that such registered mean is a good representation of all densities
because it does not mix up features that in the original axis would have occurred at
different distances with respect to the mode.

We decided to use this smoothing functional data approach for the target distribution,
because despite the shifting transformation and the segmented linear warping of the
ages before and after the mode, all features contained in f(x) are carried in the
transformation procedure.

Figure 3: Aligned age at death distributions in the years 1980-2011 for Swedish (left)
and Japanese (right panel) females. The alignment is achieved such that modal ages
at death in each year line up to the mode in 1980.
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2.3 Estimating expansion/shrinkage parameters

Given the target distribution and the shifting parameter sy estimated as described
above, we aim to estimate the expansion/shrinkage parameters bL,y and bU,y for each
year. In order to do this, we minimize the sum of squared differences between the
observed and the target distribution over the transformed age axis. Let dx,y be the
observed deaths derived from period life-tables over age x in year y; then, we can
write the objective function with respect to bL,y and bU,y as follows:

S(bL,y, bU,y|sy, dx,y,βf , py) =
∑
x

[dx,y − f(t(x, sy; bL,y, bU,y))]2

=
∑
x

{dx,y − py exp [B(t(x, sy; bL,y, bU,y)βf )]}2

where py is the total number of life-table deaths above age 10 in year y, and the
transformation function of the age axis t(·) is given in (1). A general-purpose nu-
merical optmizer works well for minimizing S(·) over the two-dimensional space of
the expansion/shrinkage parameters bL,y and bU,y. Routines for estimating the target
distribution as well as the transformation function for the age axis were implemented
in R (R Development Core Team, 2015), and they are available upon request.

3 Results

3.1 Observed versus fitted data

In this section, we illustrate our methodology by estimating the distribution and
remaining life expectancy of females in two high-longevity countries, Sweden and
Japan, during the last thirty years.

We use period life-tables from the Human Mortality Database (2015) to obtain age
at death distribution data for the two countries in this period. We fix the target
distribution and estimate the parameters s, bL and bU as described in Section 2.
From these estimates, we can compute the entire distributions over the whole age
range (starting from age 10). Moreover, summary measures such as remaining life
expectancy can be computed from these densities. Figure 4 shows the observed and
fitted remaining life expectancies in Swedish and Japanese females during the years
1980-2011.

The two graphs of Figure 4 show that the observed and fitted remaining life expectan-
cies are very close to each other. In Figure 5, we show the trends of the estimated
slopes which have been used to transform the age axis in order to conform the target
distribution to the years considered here. In Sweden, both parameters bL and bU show
an upward trend (upper panels). This is a clear sign of decreasing lifespan variation in
both segments of the age range. In the bottom panels, we can observe that Japanese
women also experienced a shrinkage in the ages above the mode (right panel), while
an erratic behavior is evident in the development before the mode (left panel).
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Figure 4: Observed (black) and fitted (red) remaining life expectancies at age 10 in
Swedish (left panel) and Japanese (right panel) females in 1980-2011
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3.2 Forecasting

The estimated parameters s, bL and bU can be additionally used to forecast age at
death distributions by projecting the trends of the mode and the compression/expansion
of deaths before and after this measure.

We use univariate autoregressive integrated moving average (ARIMA) models to de-
scribe and forecast the time series of the three parameters (Box and Jenkins, 1970).
Model selection is performed with a step-wise algorithm that minimizes the Akaike
Information Criterion (AIC) of different model specifications (Akaike, 1974; Hyndman
and Khandakar, 2008).

In order to bring coherence to the development of mortality, we started by hypoth-
esizing a single multivariate specification for the evolution of the three parameters.
Multivariate models indeed allow to take into account (and estimate) the dynamic
interrelation between variables having a common data generating process.

However, we did not find empirical support for such multivariate models: the mul-
tivariate vector autoregressive (VAR) specification of the time series did not have
significant coefficients for the interrelated parameters, and we did not find evidence
of co-integrated time series.

The reasons for these findings might be several. First of all, the time series considered
here might be too short: multivariate models have more parameters than univari-
ate ones, and the statistical power might not be enough to estimate the additional
parameters. Furthermore, it is difficult to generalize nonlinear procedures to the mul-
tivariate case. Finally, outliers can have a more serious effect on multivariate than
one univariate models.

As a result, we decided to restrict our attention to univariate models for now. However,
we will further investigate the possibility of using multivariate models (see Section 4
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Figure 5: Estimated slopes of the segmented transformations bL and bU for Swedish
(upper panels) and Japanese (bottom panels) females in 1980-2011
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for further discussion).

The models for the stationary differenced series s are a MA(1) model with drift for
Sweden, and a random walk model with drift for Japan. For bL, a MA(1) model with
drift and a random walk model are used for the two countries. Finally, an AR(1) model
with and without drift are estimated for bU in Sweden and Japan respectively.

From the projections of the three parameters, it is possible to forecast the entire age
at death distribution by extrapolating the total number of deaths occurring after the
first age in the analyses (age 10 here). We fitted a logistic function to the total number
of deaths (not shown here) to consider the upper bound of life table deaths. Figure 6
shows fifteen years ahead forecasts of age at death distributions, with 80% confidence
intervals, for Swedish and Japanese females. Confidence intervals are constructed from
a bootstrapping procedure.

It is interesting to observe the importance played by the variability of deaths. Indeed,
while the shift of the mode in the two distributions is comparable (the parameter
s increses linearly for both countries, albeit at a faster rate in Japan), the projected
compression of deaths in both segments of the age range in Sweden results in a shrink-
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Figure 6: Fifteen years ahead forecasts of age at death distributions, with 80% confi-
dence intervals, for Swedish and Japanese females.
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age of the forecasted density. This is not observed in the case of Japan, where the
forecasted density is only characterized by a shift from the target distribution (due to
constant forecasts of both bL and bU ).

Finally, Figure 7 shows the forecasts of remaining life expectancy at age 10, with
80% confidence intervals, computed from the forecasted distributions in the two coun-
tries.

4 Discussion

Trends in longevity and in the variability of lifespan have been investigated extensively
during the last decades. In most developed countries, a compression of mortality
has been observed during the first half of the 20th century. In the second half of
the century, the compression dynamic has been mainly replaced by the shifting of
the mortality schedule, with lifespan variability remaining nearly constant (Bergeron-
Boucher et al., 2015).

In this article, we present a new methodological approach that allows capturing the
compression and shifting dynamics of mortality by modeling age at death distribu-
tions. In particular, we introduce a segmented linear transformation model based on
the modal age at death and the variability of deaths before and after the mode.

In addition to modeling the age pattern of mortality, our approach can be used to
inform mortality forecasts by projecting trends in the shift and compression of mor-
tality. In Section 3, we present the results of forecasting mortality for females of two
high-longevity countries, Sweden and Japan.

The forecasts that we derive for Japan are in line with the observed trend of a predom-
inance of the shifting mortality dynamic during the second part of the 20th century.
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Figure 7: Fifteen years ahead forecasts of remaining life expectancy at age 10, with
80% confidence intervals, for Swedish and Japanese females.
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Interestingly, the forecasts for Sweden are instead characterized by a mixture of shift-
ing and compression of mortality, due to the consistent decrease of lifespan variation
observed during the last thirty years in this country. Nevertheless, our forecasts pro-
vide evidence of a likely continuation of the shifting mortality dynamic, which is due
to the consistent upward trend of the shifting parameter s.

As we stated in Section 3, we have used univariate models to describe and forecast the
parameters of the segmented linear transformation. Indeed, we did not find empirical
support for multivariate models. However, we will further investigate this possibility
by analysing more countries and more years. Furthermore, another option that we
will explore is that of simulated mortality data, which should bring additional insights
on the behaviour of the model.

Finally, we will also investigate the possibility of having a break-point for the seg-
mented linear transformation different from the modal age at death. For example,
we will analyse whether breaking the transformation at the median or mean of the
distribution will improve the fit of the model. This might be an important avenue of
future research, for example in the analysis of different causes of death. Indeed, in
such context, it may be more interesting to study the variability of deaths before and
after a certain age x smaller than the mode.

References

Akaike, H. (1974). A new look at the statistical model identification. Automatic
Control, IEEE Transactions on 19 (6), 716–723.

Baudisch, A. (2011). The pace and shape of ageing. Methods in Ecology and Evolu-
tion 2 (4), 375–382.

Bergeron-Boucher, M.-P., M. Ebeling, and V. Canudas-Romo (2015). Decomposing



Basellini & Camarda Draft for the EPC 2016 - Do not circulate or cite 11

changes in life expectancy: Compression versus shifting mortality. Demographic
Research 33, 391–424.

Booth, H. and L. Tickle (2008). Mortality modelling and forecasting: A review of
methods. Annals of actuarial science 3 (1-2), 3–43.

Box, G. E. and G. M. Jenkins (1970). Time-series Analysis, Forecasting and Control.
San Francisco: Holden-Day (revised edn., 1976).

Camarda, C. G. (2012). Mortalitysmooth: An R package for smoothing poisson
counts with p-splines. Journal of Statistical Software 50, 1–24. Available on
www.jstatsoft.org/v50/i01.

Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hy-
pothesis. Demographic Research 19, 1179.

Horiuchi, S., N. Ouellette, S. L. K. Cheung, and J.-M. Robine (2013). Modal age
at death: lifespan indicator in the era of longevity extension. Vienna Yearbook of
Population Research 11, 37–69.

Human Mortality Database (2015). University of California, Berkeley (USA)
and Max Planck Institute for Demographic Research (Germany). Available at
www.mortality.org or www.humanmortality.de (data downloaded on December 5,
2015).

Hyndman, R. and Y. Khandakar (2008). Automatic time series forecasting: The
forecast package for r. Journal of Statistical Software 27 (3), 1–22.

Oeppen, J. et al. (2008). Coherent forecasting of multiple-decrement life tables: a test
using japanese cause of death data. In Composotional Data Analysis Conference.
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada.
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